TiO(2)@carbon core/shell nanofibers: controllable preparation and enhanced visible photocatalytic properties.

نویسندگان

  • Peng Zhang
  • Changlu Shao
  • Zhenyi Zhang
  • Mingyi Zhang
  • Jingbo Mu
  • Zengcai Guo
  • Yichun Liu
چکیده

TiO(2)@carbon core/shell nanofibers (TiO(2)@C NFs) with different thinkness of carbon layers (from 2 to 8 nm) were fabricated by combining the electrospinning technique and hydrothermal method. The results showed that a uniform graphite carbon layer was formed around the electrospun TiO(2) nanofiber via C-O-Ti bonds. By adjusting the hydrothermal fabrication parameters, the thickness of carbon layer could be easily controlled. Furthermore, the TiO(2)@C NFs had remarkable light absorption in the visible region. The photocatalytic studies revealed that the TiO(2)@C NFs exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure TiO(2) nanofibers under visible light irradiation, which might be attributed to high separation efficiency of photogenerated electrons and holes based on the synergistic effect between carbon as a sensitizer and TiO(2) with one dimension structure. Notably, the TiO(2)@C NFs could be easily recycled due to their one-dimensional nanostructural property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Photocatalytic Activity of CdS-Decorated TiO2/Carbon Core-Shell Microspheres Derived from Microcrystalline Cellulose

The fabrication of reusable and biodegradation materials from renewable resources such as cellulose is essential for a sustainable world. The core-shell structured CdS-decorated TiO₂/Carbon microspheres (CdS/TiO₂/Carbon MS) photocatalyst was synthesized with controlled hydrolysis and a novel sonochemical method. It was prepared by using crosslinked microcrystalline cellulose as the core, tetrab...

متن کامل

Heterojunctions of p-BiOI Nanosheets/n-TiO₂ Nanofibers: Preparation and Enhanced Visible-Light Photocatalytic Activity.

p-BiOI nanosheets/n-TiO₂ nanofibers (p-BiOI/n-TiO₂ NFs) have been facilely prepared via the electrospinning technique combining successive ionic layer adsorption and reaction (SILAR). Dense BiOI nanosheets with good crystalline and width about 500 nm were uniformly assembled on TiO₂ nanofibers at room temperature. The amount of the heterojunctions and the specific surface area were well control...

متن کامل

Electrospinning Synthesis and Photocatalytic Activity of Mesoporous TiO2 Nanofibers

Titanium dioxide (TiO(2)) nanofibers in the anatase structure were successfully prepared via electrospinning technique followed by calcination process. The morphologies, crystal structure, surface area, and the photocatalytic activity of resulting TiO(2) nanofibers were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffracti...

متن کامل

Homogeneous synthesis of SiO2@TiO2 nanocomposites with controllable shell thickness and their enhanced photocatalytic activity.

Here we report the use of sulfuric acid as a catalyst for the facile and homogeneous synthesis of core-shell SiO(2)@TiO(2) nanocomposites using simple apparatus, under ambient pressure and temperature. The resultant SiO(2)@TiO(2) exhibits an ideal core-shell structure with uniform nanoscale TiO(2) coverage. The shell thickness of SiO(2)@TiO(2) can be conveniently tuned through adjustment of the...

متن کامل

Application of Ni-Oxide@TiO2 Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors

Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO₂ core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 3 7  شماره 

صفحات  -

تاریخ انتشار 2011